Unsupervised Learning of Evolving Relationships Between Literary Characters

نویسندگان

  • Snigdha Chaturvedi
  • Mohit Iyyer
  • Hal Daumé
چکیده

Understanding inter-character relationships is fundamental for understanding character intentions and goals in a narrative. This paper addresses unsupervised modeling of relationships between characters. We model relationships as dynamic phenomenon, represented as evolving sequences of latent states empirically learned from data. Unlike most previous work our approach is completely unsupervised. This enables data-driven inference of inter-character relationship types beyond simple sentiment polarities, by incorporating lexical and semantic representations, and leveraging large quantities of raw text. We present three models based on rich sets of linguistic features that capture various cues about relationships. We compare these models with existing techniques and also demonstrate that relationship categories learned by our model are semantically coherent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships

Understanding how a fictional relationship between two characters changes over time (e.g., from best friends to sworn enemies) is a key challenge in digital humanities scholarship. We present a novel unsupervised neural network for this task that incorporates dictionary learning to generate interpretable, accurate relationship trajectories. While previous work on characterizing literary relatio...

متن کامل

Modeling Evolving Relationships Between Characters in Literary Novels

Studying characters plays a vital role in computationally representing and interpreting narratives. Unlike previous work, which has focused on inferring character roles, we focus on the problem of modeling their relationships. Rather than assuming a fixed relationship for a character pair, we hypothesize that relationships temporally evolve with the progress of the narrative, and formulate the ...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Linguistic Issues in Language Technology – LiLT

T. S. Eliot’s poem The Waste Land is a notoriously challenging example of modernist poetry, mixing the independent viewpoints of over ten distinct characters without any clear demarcation of which voice is speaking when. In this work, we apply unsupervised techniques in computational stylistics to distinguish the particular styles of these voices, offering a computer’s perspective on longstandi...

متن کامل

Fusing Social Networks with Deep Learning for Volunteerism Tendency Prediction

Zobrist Hashing: An Efficient Work Distribution Method for Parallel Best-First Search Yuu Jinnai, Alex Fukunaga VIS: Text and Vision Oral Presentations 1326 SentiCap: Generating Image Descriptions with Sentiments Alexander Patrick Mathews, Lexing Xie, Xuming He 1950 Reading Scene Text in Deep Convolutional Sequences Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, Xiaoou Tang 1247 Creating Image...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017